
 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 06 | June -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 1

Software Testing- Objectives, Goals and Limitations

Anubhav Sharma
Dronacharya College of Engineering

Gurgaon, Haryana-122001

ABSTRACT
Software testing is an activity which is aimed for

evaluating quality of a program and also for improving it,

by identifying defects and problems. Software testing

strives for achieving its goals (both implicit and explicit)

but it does have certain limitations, still testing can be

done more effectively if certain established principles are

be followed. In spite of having limitations, software

testing continues to dominate other verification

techniques like static analysis, model checking, and

proofs. So it is indispensable to understand the goals,

principles and limitations of software testing so that the

effectiveness of software testing could be maximized.

INTRODUCTION
Testing is an activity performed for evaluating

software quality and for improving it. Hence, the

goal of testing is systematical detection of different

classes of errors in a minimum amount of time and

with a minimum amount of effort.
Software testing is a process of verifying and

validating that a software application or program

meets the business and technical requirements that

guided its design and development and works as

expected and also identifies important errors or flaws

categorized as per the severity level in the application

that must be fixed. Software testing is also used to test

the software for other software quality factors like

reliability, usability, integrity, security, capability,

efficiency, portability, maintainability, compatibility

etc. Testing approach differs for different software’s,

level of testing and purpose of testing. Software

testing should be performed efficiently and

effectively, within the budgetary and scheduling

limits. Due to large number of testing limitations like

Exhaustive (total) testing is impossible, compromise

between thoroughness, time and budget, it is

impossible to be sure that we have removed each and

every bug in the program. Following established

principles can make testing easier and more effective,

and can also ensure that testing goals are achieved to

its maximum despite having certain limitations. They

also ensure that a process is repeatable. Software

testing is a very important quality filter and needs to

be planned taking into account its goals, principles

and limitations.

Figure-1- Test Information Flow

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 06 | June -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 2

TESTING GOALS
A goal is a projected state of affairs that a person or

system plans or intends to achieve. A goal has to be

accomplishable and measurable. It is good if all goals

are interrelated. In testing we can describe goals as

intended outputs of the software testing process.

Software testing has following goals:

Verification and Validation
It would not be right to say that testing is done only

to find faults. Faults will be found by everybody using

the software. Testing is a quality control measure used

to verify that a product works as desired Software

testing provides a status report of the actual product in

comparison to product requirements (written and

implicit). Testing process has to verify and validate

whether the software fulfills conditions laid down for

its release/use. Testing should reveal as many errors

as possible in the software under test, check whether

it meets its requirements and also bring it to an

acceptable level of quality.

Priority Coverage
Exhaustive testing is impossible. We should perform

tests efficiently and effectively, within budgetary and

scheduling limitations. Therefore testing needs to

assign effort reasonably and prioritize thoroughly.

Generally every feature should be tested at least with

one valid input case. We can also test input

permutations, invalid input, and non-functional

requirements depending upon the operational profile

of software. Highly present and frequent use

scenarios should have more coverage than

infrequently encountered and insignificant scenarios.

Balanced
Testing process must balance the written requirements, real-

world technical limitations, and user expectations. The

testing process and its results must be repeatable and

independent of the tester, i.e., consistent and unbiased.

Apart from the process being employed in development

there will be a lot unwritten or implicit requirements. While

testing, the software testing team should keep all such

requirements in mind. They must also realize that we are

part of development team, not the users of the software.

Testers personal views are

but one of many considerations. Bias in a tester

invariably leads to a bias in coverage. The end user's

viewpoint is obviously vital to the success of the

software, but it is not all that matters as all needs cannot

be fulfilled because of technical, budgetary or scheduling

limitations. Every defect/shortcoming has to be

prioritized with respect to their time and technical

constraints.

Traceable
Documenting both the successes and failures helps in

easing the process of testing. What was tested, and how it

was tested, are needed as part of an ongoing testing process.

Such things serve as a means to eliminate duplicate testing

effort. Test plans should be clear enough to be re-read and

comprehended. We should agree on the common

established documentation methods to avoid the chaos and

to make documentation more useful in error prevention.

Deterministic
Problem detection should not be random in testing. We

should know what we are doing, what are we targeting,

what will be the possible outcome. Coverage criteria

should expose all defects of a decided nature and

priority. Also, afterward surfacing errors should be

categorized as to which section in the coverage it would

have occurred, and can thus present a definite cost in

detecting such defects in future testing. Having clean

insight into the process allows us to better estimate costs

and to better direct the overall development.

TESTING PRINCIPLES
A principle is an accepted rule or method for application

in action that has to be, or can be desirably followed.

Testing Principles offer general guidelines common for

all testing which assists us in performing testing

effectively and efficiently. Principles for software testing

are: Test a program to try to make it fail Testing is the

process of executing a program with the intent of finding

errors. Our objective should be to demonstrate that a

program has errors, and then only true value of testing

can be accomplished. We should expose failures (as

many as possible) to make testing process more

effective.

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 06 | June -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 3

Start testing early
If you want to find errors, start as early as possible. This

helps in fixing enormous errors in early stages of

development, reduces the rework of finding the errors in

the initial stages. Fixing errors at early phases cost less

as compared to later phases. For example, if a problem in

the requirements is found after releasing the product,

then it would cost 10–100 times more to correct than if it

had already been found by the requirements review.

Figure 1 depicts the increase in cost of fixing bugs

detected/fixed in later phases.

Figure- 1- Cost of fixing bugs in different phases.

Testing is context dependent
Testing is done differently in different contexts. Testing

should be appropriate and different for different points of

time. For example, the safe-critical software is tested

differently from an e-commerce site. Even a system

developed using the waterfall approach is tested

significantly differently than those systems developed

using agile development approach. Even the objectives

of testing differ at different point in software

development cycle. For example, the objective of unit

and integration testing is to ensure that code

implemented the design properly. In system testing the

objective is to ensure the system does what customer

wants it to do. Type of testing approach that will be used

depends on a number of factors, including the type of

system, regulatory standards, user requirements, level

and type of risk, test objective, documentation available,

knowledge of the testers, time and budget, development

life cycle.

Design Test Plan
Test Plan usually describes test scope, test

objectives, test strategy, test environment, deliverables of

the test, risks and mitigation, schedule, levels of testing to

be applied, methods, techniques and tools to be used. Test

plan should efficiently meet the needs of an organization

and clients as well. The testing is conducted in view of a

specific purpose (test objective) which should be stated in

measurable terms, for example test effectiveness, coverage

criteria. Although the prime objective of testing is to find

errors, a good testing strategy also assesses other quality

characteristics such as portability, maintainability and

usability. Design Effective Test cases

Complete and precise requirements are crucial for

effective testing. User Requirements should be well

known before test case design. Testing should be

performed against those user requirements. The test case

scenarios shall be written and scripted before testing

begins. If you do not understand the user requirements

and architecture of the product you are testing, then you

will not be able to design test cases which will reveal

more errors in short amount of time. A test case must

consist of a description of the input data to the program

and a precise description to the correct output of the

program for that set of input data. A necessary part of

test documentation is the specification of expected

results, even if providing such results is impractical.

These must be specified in a way that is measurable so

that testing results are unambiguous.

Test for positive as well as negative
conditions
In addition to positive/valid inputs, we should also

test system for negative/invalid and unexpected

inputs/conditions. Many errors are discovered when a

program under test is used in some new and

unexpected way and negative input conditions seem

to have higher error detection yield than do test cases

for positive input conditions. Choose test inputs that

possibly will uncover maximum faults by triggering

failures.

Regular review of test cases
Repeating same test cases over and over again eventually

will no longer find any new errors. Therefore the test

cases need to be regularly reviewed and revised, and new

and different tests need to be written to exercise different

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 06 | June -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 4

parts of the software or system to potentially find

more defects. We should target and test susceptible

areas. Exploratory Testing can prove very useful.

Exploratory testing is any testing to the extent that the

tester actively controls the design of the tests as those

tests are performed and uses information gained while

testing to design new and better tests.

Testing must be done by different testers at
different levels
Different purposes are addressed at the different levels of

testing. Factors which decide who will perform testing

include the size and context of the system, the risks, the

development methodology used, the skill and experience

of the developers. Testing of individual program

components is usually the responsibility of the

component developer (except sometimes for critical

systems); Tests at this level are derived from the

developer’s experience. Testing at system/sub-system

level should be performed by the independent

persons/team. Tests at this level are based on a system

specification. Development staff shall be available to

assist testers. Acceptance Testing is usually performed

by end user or customer. Release Testing is performed by

Quality Manager. Figure 2 shows persons involved at

different levels of software testing.

Figure 2- Software Testing Levels

Test a program innovatively
Testing everything (all combinations of inputs and

preconditions) is not feasible except for

trivial cases. It is impossible to test a program

sufficiently to guarantee the absence of all errors.

Instead of exhaustive testing, we use risks and

priorities to focus testing efforts more on suspected

components as compared to less suspected and

infrequently encountered components.
Use both Static and Dynamic testing Static testing is

good at depth; it reveals developers understanding of

the problem domain and data structure. Dynamic

testing is good at breadth; it tries many values,

including extremes that humans might miss. To

eliminate as many errors as possible, both static and

dynamic testing should be used.

Defect clustering
Errors tend to come in clusters. The probability of the

existence of more errors in a section of a program is

proportional to the number of errors already finding

that section, so additional testing efforts should be

more focused on more error-prone sections until it is

subjected to more rigorous testing.

Test Evaluation
We should have some criterion to decide whether a test

is successful or not. If limited test cases are executed,

the test oracle (human or mechanical agent which

decides whether program behaved correctly on a given

test) can be tester himself/herself who inspects and

decides the conditions that makes test run successfully.

When test cases are quite high in number, automated

oracles must be implemented to determine the success or

failure of tests without manual intervention. One good

criterion for test case evaluation is test effectiveness

(number of errors it uncovers in given amount of time).

Error Absence Myth
System that does not fulfill user requirements will not

be usable even if it does not have any errors. Finding

and fixing defects does not help if the system built does

not fulfill the users’ needs and expectations. In addition

to positive software testing (which verify that system

does what it should do), we should also perform

negative software testing (which verify that system

does not do what it should not do). End of Testing

Software testing is an ongoing process, which is

potentially endless but has to be stopped

http://www.ijsrem.com/

 International Journal of Scientific Research in Engineering and Management (IJSREM)

 Volume: 04 Issue: 06 | June -2020 ISSN: 2582-3930

© 2020, IJSREM | www.ijsrem.com Page 5

somewhere. Realistically, testing is a trade-off

between budget, time and quality. The effort spent on

testing should be correlated with the consequences of

possible program errors. The possible factors for

stopping testing are:
The risk in the software is under acceptable
limit.
Coverage of code/functionality/requirements reaches a
specified point.
Budgetary/scheduling limitations.

TESTING LIMITATIONS
Limitation is a principle that limits the extent of something.

Testing also has some limitations that should be taken into

account to set realistic expectations about its benefits. In

spite of being most dominant verification technique,

software testing too has following limitations:

Testing can be used to show the presence of

errors, but never to show their absence. It can

only identify the known issues or errors. It

gives no idea about defects still uncovered.

Testing cannot guarantee that the system

under test is error free.

Testing provides no help when we have to

make a decision to either "release the product

with errors for meeting the deadline" or to

"release the product late compromising the

deadline".

Testing cannot establish that a product

functions properly under all conditions but

can only establish that it does not function

properly under specific conditions.

Software testing does not help in finding

root causes which resulted in injection of

defects in the first place. Locating root

causes of failures can help us in preventing

injection of such faults in future.

CONCLUSION
Software testing is a vital element in the SDLC and can

furnish excellent results if done properly and effectively.

Unfortunately, Software testing is often less formal and

rigorous than it should, and a main reason for that is

because we have struggled to define best

practices, methodologies, principles, standards for

optimal software testing. To perform testing effectively

and efficiently, everyone involved with testing should

be familiar with basic software testing goals, principles,

limitations and concepts. Already lot of work has been

done in this field, and even continues today.

Implementing testing principles in real world software

development, to accomplish testing goals to maximum

extent keeping in consideration the testing limitations

will validate the research and also will pave a way for

future research.

REFERENCES

[1] https://testingbasicinterviewquestions.bl
ogspot.com

[2] https://www.researchgate.net/publication

/46280097_Software_Testing_-

_Goals_Principles_and_Limitations

[3] https://www.educba.com/software-

testing-principles/

[4] Guide to the Software Engineering Body of

Knowledge– A project of the IEEE

Computer Society Professional Practices

Committee, 2004.

[5] Sumit, D. A., “Software
Testing Techniques”

[6]] IEEE, “IEEE Standard Glossary of

Software Engineering Terminology” (IEEE

Std. 610.12-1990)

[7] Programming Research Ltd, ―Static and

Dynamic Testing Compared.

[8] Rajat Kumar Bal, Software Testing

[9] IEEE software,

www.computer.org/software/

http://www.ijsrem.com/

